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Abstract. We consider a Hebbian learning mechanism, which gives rise to a change in 
synaptic efficacies only if the postsynaptic neuron is active. The model is solved analytically 
in the limit of strong dilution. The network is shown to classify initial configurations 
according to their mean activity and their overlap with one of the learnt patterns. The 
capacity of the network is calculated as a function of threshold. 

1. Introduction 

In the last few years, spin-glass models have been used extensively to describe the 
collective properties of highly connected neural networks. The success of these models 
is partially due to the courageous simplifications which were introduced into the 
formulation of the model and which allow for a quantitative analysis by the methods 
of statistical mechanics. On the other hand it was realised from the very beginning 
that some of the assumptions made in the Hopfield-Little model [ l ]  contradict 
physiology. Hence various attempts have been made to either lift these assumptions 
or otherwise introduce physiological constraints. We mention only a few such contra- 
dictory points. 

( i )  In biological networks the synaptic efficacies are asymmetric, if not unidirec- 
tional. 

(ii) The connectivity in biological systems is high but not complete. 
(iii) In the Hopfield-Little model all internal timescales are ignored, like presynap- 

tic delays or postsynaptic summation times. 
(iv) All synapses, which connect a given neuron to others, are either excitatory or 

inhibitory. Even though exceptions are known, this so-called Dale’s law seems widely 
accepted for biological networks. 

Asymmetry and dilution have been investigated by several groups [2,3]; Dale’s 
law has been implemented by Shinomoto [4] and various timescales have also been 
discussed [ 5 ] .  One of the results of these studies is the enormous robustness of the 
Hopfield model to structural changes in the model. Asymmetries, dilution, delays etc 
do not affect the retrieval properties significantly and sometimes even improve the 
performance of the network. 

In the above examples some firm knowledge about the underlying physiological 
processes is available. Much less is known about the long-term changes of neuronal 
connectivity, which provide a mechanism of learning. There is experimental evidence 
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(for a review see, e.g. [6])-mainly from the visual system-that the time-dependent 
correlations between the activity of the pre- and postsynaptic neuron play an important 
role in these long-term changes of the neuronal interactions. Furthermore some 
experiments [6] have led to the conclusion that it is the activation qf the postsynaptic 
neuron which is essential for changes in the synaptic efficacies. Hebb [7] and others 
[8] suggested that the efficacy of an excitatory synapse should increase when both the 
pre- and the postsynaptic neuron are active, and that it should decrease when the 
postsynaptic neuron is active while the presynaptic neuron is silent. We have taken 
this learning rule seriously and studied the following model: 

AJ,, =; (U1 + l)u,. (1) 

The synaptic efficacy Jv operating between the presynaptic neuron U, = i l  and the 
postsynaptic neuron U, = *l is changed only if the postsynaptic neuron is active. An 
excitatory synapse is changed as suggested by Hebb, whereas inhibition becomes less 
effective if both neurons are simultaneously active and becomes more effective if the 
postsynaptic one is active and the presynaptic one is not. 

2. The model 

We consider a Hopfield-Little model for a network of N binary neurons U, = i l ,  
i = 1,. . . , N. Each active neuron U, = 1 contributes to the postsynaptic potential of 
neuron i 

according to the synaptic strength JI,. If  the postsynaptic potential exceeds a threshold 
Hi then the postsynaptic neuron is activated 

ui(t + A t )  = sgn(h,(t)  - Ho) .  (3) 

For simplicity we consider a uniform threshold only, H, = Ho > 0. We shall also consider 
noisy dynamics, for which the updating proceeds according to 

The parameter To measures the strength of the noise and is therefore called ‘tem- 
perature’. We shall only consider parallel updating. It can, however, be shown [3] 
that the stationary states are the same for sequential updating. 

The network has learnt p patterns according to the rule of ( I ) ,  such that the resulting 
couplings are given by 

. D  

where [f denotes the value of site i in pattern kcL. We assume the 6: to be independent 
random numbers, which take on the values [f = il with equal probability. Note that 
the synaptic efficacies in (5) are not symmetric, because our learning rule differentiates 
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between post- and presynaptic neurons. Hence there is no a priori Liapunov functional, 
which decreases monotonically during the time evolution of the network. 

Our model is most easily solved in the limit of strong dilution [3]: each synapse 
J, is present only with a small probability. This is achieved by replacing jiJ by - 

J . .  = C.. J . .  
V V U 

with C, E (0 , l )  a random number, which is drawn from the distribution 

The strong-dilution limit requires C fixed in the limit N + m .  Note that Cij and Cji 
are independent random numbers, so that the dilution also gives rise to asymmetry in 
the couplings Jij .  

In order to solve the model, we introduce two order parameters p l ( t )  and p 2 ( f ) ,  
giving 

for 6; = 1 

for 6; = -1. 
(8) I 

I 
with probability pl(  t )  
with probability (1 - pl( t)) 

with probability p2(  t )  

with probability (1 - p 2 (  t ) )  

-t: 
U i (  t )  = [: 

-6;  
The appearance of two order parameters is due to the fact that our model is not 
symmetric with respect to the up and down state (active and inactive neuron). 

We define the overlap of the system with one pattern (e.g. the first) q ( t )  and the 
magnetisation (or mean activity) m ( r )  as 

l N  
N i = l  

m( t )  := - (ai( t ) )  

where ( 
The overlap and the magnetisation are related to p1 and p 2  according to 

) denotes the average over the { Cij } ,  the patterns and the stochastic dynamics. 

m ( t )  = P l ( t ) - P r ( t )  (11) 

and 

q ( t )  = P l ( f ) + P 2 ( f )  - 1. (12) 

The dynamic evolution of these quantities is given through two coupled equations of 
motion, as shown in the appendix. These equations simplify considerably in the limit 
C + m (after performing the limit N + 00 such that C /  N + 0): 
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and 

q( t )  -J2a( 1 + m (  r ) ) y  - 2H 
2T 

q( t + A t )  =- A I_: 

Here we have introduced a ‘reduced’ temperature T and a ‘reduced’ threshold H 

T:= To/C H := Ho/C 

and a,  given by 

a := (P- l ) / C  

denotes the number of stored patterns with respect to the existing couplings. 

of motion (equations (13) and (14)). 
In the following sections we shall discuss the stationary solutions of the equations 

3. The case a = 0 

The retrieval properties are most easily analysed if the number of patterns is negligible 
as compared to the mean connectivity C, i.e. a = 0. In this limit the fixed-point equation 
for the overlap reads 

q-2H 
q = f tanh( 7) ++ tanh (F) . 

Zero overlap q* = 0 is always a solution of (16); it is stable for sufficiently large fields 

cosh2( H/  T) > 1/4T (17) 

The line of instability H( T) or  T (  H )  defined by (17) is shown in figure 1 as T,( H). 
To the left of this line q* = 0 is unstable and  there are two stable fixed points-one 

Figure 1. Phase diagram for a = 0. Figure 2. Stationary (full curve) and critical (broken 
curve) overlap as a function of H for the three 
temperatures indicated in figure 1.  The dotted line 
indicates the limit J +  0. 
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with positive and one with negative overlap. To the right of this line q* = 0 is a stable 
fixed point and all initial configurations with a negative overlap are attracted to it. In 
addition to the zero-overlap solution, there is a pair of fixed points with positive 
overlap, one stable, q*,  and one unstable, qc ,  such that OS qcG q*. Hence there is a 
critical overlap q c ( H ) ,  such that an initial configuration with q > qc is recognised 
(attracted to the fixed point q*) ,  whereas an initial overlap with q < q c  is iterated 
towards zero overlap. The fixed point q * ( H )  > 0 persists up to a critical temperature 
T J H ) ,  where the unstable ( q c )  and stable ( q * )  fixed points merge. No retrieval is 
possible beyond Tc( H ) .  The overlap q* jumps discontinuously to a finite value, when 
the line T J H )  is approached from high temperatures or large fields. This is most 
easily seen for T = 0, where (16) becomes 

q =i(sgn(q/2-H)+sgn H). (18) 

At a critical field H = f the overlap jumps discontinuously from zero to one. In figure 
2 we show the fixed-point value q* together with the critical overlap qc as a function 
of H for various temperatures. 

The magnetisation 

m = f t a n h ( y ) - f t a n h ( f )  

is slaved to q :  it is positive for q > 4H and negative otherwise. 

4. The case T = O  

We now have to look for fixed points in the (q,  m )  plane, which are determined by 
the coupled equations for the overlap q and the magnetisation m 

q - 2 H  2 H  
= 1 {er( ) +er( J2 a ( l + m )  )} =: g ( q ,  m )  2 2 a ( l + m )  

q - 2 H  2 H  

The ferromagnetically aligned state ( q  = 0, m = -1) is a stable fixed point for all values 
of a and H. Since it has no correlation with any of the learnt patterns, it can be 
regarded as the ‘waste basket’ for those initial configurations of the network which 
cannot be classified according to their correlation with the learnt patterns. 

Retrieval states with a finite overlap q Z 0  with one pattern exist for sufficiently 
small H and a, as shown in figure 3(a).  There is a continuous transition for H < H,, 
such that q* goes continuously to zero as one approaches a , ( H )  from below. The 
line a , ( H )  coincides with the limit of stability of q* = 0 and is given by 

J27ral(1 + m )  = exp 

For H > HM, there is a discontinuous transition such that q* jumps to a finite value 
when the line a , ( H )  is crossed from the side of large a or H. The line a , (H)  ends 
in the point ( a  = 0, H = f) in agreement with the results of 0 3. Within the retrieval 
phase (the region under the lines a , ( H )  and a 2 ( H )  in figure 3 ( a ) )  there is another 
line a , ( H ) ,  such that to the left of this line there is also a stable fixed-point solution 
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Figure 3. ( a )  Phase boundaries for the retrieval phase. ( b )  Limit of stability a , ( H )  and 
existence a , (H)  of the partially aligned state with zero overlap. 

with a negative overlap q* < 0, which attracts initial conditions which are anticorrelated 
with one of the patterns. To the right of the line a3(H) no such solution exists. The 
magnetisation in the retrieval state q* > 0 can be either positive or negative, depending 
on the parameters a and H. 

Besides the ferromagnetic state and the retrieval state, there can be another fixed 
point with zero overlap and imperfect alignment ( m  > -1 ) .  It is stable provided 

and 

1 - 2 1  > o  
a m  q=O,m* 

where m* has to be determined self-consistently from 

This latter equation always has the stable solution m* = -1, as claimed above. For 
sufficiently large a > a,= 12.07 H 2  there is another pair of solutions, one stable ( m , )  
and one unstable ( m , )  with respect to fluctuations in m. These are shown in figure 4. 
The parabola a c =  12.07 H2 defines a line in the ( a ,  H )  plane, as shown in figure 3 ( b ) .  
This line coincides with the limit of stability determined by (24) 

Stability with respect to fluctuations in q (23) requires 

J~rra(l+ m*)  > exp 2H2 ).  
a ( l + m * )  
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Figure 4. Magnetisation in the retrieval phase with 
zero overlap. 

Figure 5. Figures 3 ( a )  and ( b )  superimposed, giving 
rise to three different retrieval phases ( I ,  11, 111) in 
the (a, H) plane. 

Note that the basin of attraction of the ferromagnetic state must be rather small, 
if the unstable fixed point exists, as can be seen from figure 4. 

These results are put together in figure 5 .  In regions I, I1 and 111 the network is 
able to retrieve a learnt pattern. Region I is characterised by two stable fixed points, 
one with positive and one with negative overlap (besides the ferromagnetic state, which 
is stable in the whole (a, H )  plane). In figure 6 ( a )  we have indicated their basins of 
attraction. The points in the (q ,  m )  plane denote an initial condition and the symbols 
associated with the points denote the asymptotic states which are reached by iteration 
of (20) and (21). Note that the magnitude of m and q is restricted by Im*qlG 1. In 
region I1 there is only one fixed point with positive overlap and in region I11 there 
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Figure 6. Basins of attraction in the m (horizontal axis) and q (vertical axis) plane for the 
three retrieval phases of figure 5. They correspond to ( a )  (a, H)=(0.1, 0.05) (phase I ) ,  
( b ) ( a ,  H)=(0.1,0.15)(phaseIl)and(c)(a,H)=(0.197,0.1205)(phaseIII). Thesymbols 
denote: 

.1 fully aligned ( m  = -1 ,  q = 0) + q ’ o  

1 partially aligned (- 1 < m < 0, q = 0) - q<o.  
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are two fixed points, one with positive and another one with zero overlap. Their basins 
of attraction are shown in figures 6(b) and 6(c). 

5. Conclusions 

We have studied a Hopfield network with a learning rule, which is based on the 
assumption that activation of the postsynaptic neuron is required for long-term 
modification of synaptic efficacies. The stationary states of the model have been 
analysed and the phase diagram has been calculated as a function of threshold field 
H and capacity a. Several different retrieval phases were shown to exist (see figure 
5 ) .  The network can serve as an associative memory: it classifies an initial configuration 
according to its mean activity and its overlap with one of the learnt patterns. In 
particular in region I1 all those configurations whose initial overlap is too small are 
attracted to a state with no correlation with any of the learnt patterns. This so-called 
‘waste basket’ is the completely inactive state. The capacity of the network is found 
to depend on the threshold of the postsynaptic neuron; it is optimal for H = 0.1, and 
no retrieval is possible for H > i .  

It would be interesting to study the timescale of relaxation into a retrieval state, 
as well as the detailed structure of the attractors. In biological networks there seems 
to be no evidence for interactions, which are independent of the state of the neurons. 
Hence it might be useful to study a wider class of models with interactions which are 
not symmetric with respect to the up and down (active and inactive) state. Work along 
this line is in progress. 
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Appendix 

The basic idea which enables the derivation of the equations of motion is the observation 
that in the ‘strong dilution limit’ the dynamic ‘ancestors’ of a neuron vi (i.e. those 
neurons vj, for which Ji, # 0) are mutually correlated only with probability zero. Details 
of this idea can be found in [3]. 

We label the dynamic ‘ancestors’ of neuron vi with v,, , . . . , vjK and get for the 
local field 

where we have included the threshold into the definition of h,. We define 

and obtain 
q, := +6;,(U,, ( t )  + 1) (28) 

with probability t ( l  -p l ( t )+p2( t ) )  

with probability :( 1 - p 2 (  t ) ) .  
with probability $PI( t )  (29) 
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If we denote the number of occurrences of 0 and of -1 in the set rj., with lo (and 
respectively 11), we have 

k 

~j ,=k-lo-211 
r = l  

with probability 

(30 )  

Due to the assumption that the state of the network is uncorrelated to all patterns but 
the first, we get for p > 1 

k !  
l o ! l l !  [ k  - I o -  l l ] !  

(1 -PI( t )  +p2(  t ) ) ' o (  1 -p2( t ) )  "PI( t )  k - ' o - / l  

2k 

0 with probability a(3 - p , (  t )  + p 2 (  t ) )  

with probability Q( 1 + p l (  t )  - p 2 ( t ) ) .  
with probability Q( 1 +pl(  t )  - p 2 (  t ) )  (31) 

We denote the numbers of occurrences of 0 and of (-1) in the set 
r = l  ... k {$(tY + f ( a j , ( t )  + 1))  w = ? , . . P  

with no (and respectively n , )  and get 
P k  

k(tY + 1)t: i(a,,(t) + 1) = k ( P  - 1 )  - no-2n,  
+ = 2  r = I  

with probability 

[ k (  P - I ) ] !  ( 3  -PI ( t )  + p2( t ) )  n o (  1 +PI( t )  - p2( t ) )  k ' P - l ) - n u  
23k( P -  1 ) -no no! n , ! [ k (  P - 1 ) - no - n ,  ] ! 

Combining (30) ,  (32)  and (34 )  we obtain 

m ( t + A t ) = -  

k- 10-21, + k ( P -  1) - no-2n,  - Ho 
TO 

+ tanh ( (33)  

where Z( C, P ;  p ,  q )  is a linear operator which maps a function f( k, lo, I , ,  no ,  n , )  onto 
the real axis via 

k ( i - 1 )  k ( P - l ) - n ,  [ k ( P - I ) ] !  c 
,,,=o ,,,=o n,!n,![k(  P - 1 )  - no - n , ] !  
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We have used the fact that a neuron has k dynamic ancestors with probability 

w ( k )  = ( ;) [ $1 [ 1 -3 N - k  

C k  
= - exp( -C) 

k !  

where the second line holds in the 'strong dilution limit'. 
An analogous consideration yields the equation of motion for q :  

(34) 

(35) 
k -  lo-21, + k ( P -  1)- no-2nl  + Ho 

To 
+ tanh 

To discuss the equations of motion for m ( t )  and q ( t )  it is convenient to allow for a 
large connectivity C. This does not spoil our argument concerning the uncorrelated 
dynamic ancestors since we perform the limit N + 00 first. We therefore consider the 
limit C + 03, P + 00 such that 

a := (P - 1 )/ c 
is finite. a > 0 means that we have a macroscopic number of stored patterns (with 
respect to the number of bonds). It is a straightforward calculation to show that in 
this limit (33) and (35) lead to (13) and (14). 
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